If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-124x-320=0
a = 9; b = -124; c = -320;
Δ = b2-4ac
Δ = -1242-4·9·(-320)
Δ = 26896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26896}=164$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-124)-164}{2*9}=\frac{-40}{18} =-2+2/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-124)+164}{2*9}=\frac{288}{18} =16 $
| y=2,2969*16+34,435*4-10,114 | | y=2,2969*4+34,435*2-10,114 | | y=2,2969*16+34,435*2-10,114 | | y=2,2969*(16)+34,435*(2)-10,114 | | 3x+17=6x-13 | | 46=8(7-4x)-7(1-8x) | | 7a-2=-4(-3a+8) | | 6x-15+3x+17=6x-13 | | 8(8d+3)=4d-6 | | 0=16t^2+10 | | 2y/7=3 | | 6h-16=4(-h-3) | | x^2+36x-216=0 | | 4x-12=128 | | 3(−5x+4)+5x−1=-39−39 | | y=-1E-05*(4)+0,0231*(2)+0,4373 | | y=-1E-05*(16)+0,0231*(4)+0,4373 | | 7p+2=19 | | 2x+3+4x+1=4(3x+3) | | 5x+38=118 | | 4x-5x=10-8 | | 10^3x=628 | | t/10=32 | | 2(3x+1)=3x+14 | | 2u=828 | | -(x+9)=23-3x | | x=50000+.15x | | 224x-13+4x+13+6x+2=180 | | (7x+3)-(2x-1)=19 | | 3y^2+4y-64=0 | | 5^2x+1=25^2x-1 | | 6x21=4x-9 |